25 Days Creative

A few weeks ago I decided to embark on a creative adventure. I started a new career as a design technology specialist at the architecture and design firm Gensler. I have worked at this firm for over six years as an architectural designer but my passions and interests have shifted towards design technology. My specialties are in virtual reality and computational design but my interests span many creative platforms. As a way to jump-start this new beginning and build up a portfolio of experience, I have been creating daily art pieces on a somewhat regular basis and posting them to Instagram under the hashtag #100dayscreative. I am not very strict about being consecutive but I am trying to wrap it all up in a somewhat small amount of time.

The projects are usually focused on learning a new skill or trying out a new software or plugin. There usually isn’t enough time to dig deep but the idea is more about exposure and making the time to be creative.

Below are some works from the first 25 days that were showcased at an office-wide art exhibit. Software used includes Adobe Illustrator, Adobe After Effects, Grasshopper 3D, Rhinocerous, Adobe Premiere, Adafruit electronics, Google Tiltbrush, and Gravity Sketch.

The Making of Holographic Sky

Holographic sky was created by the Design Labs Houston group at the architecture and design firm Gensler. Design labs Houston is a grassroots organization that experiments and works with future technologies and practices in the design industry. The installation was created for Transwestern as part of their artist series. For more information

The Holographic Sky art installation celebrates the grandiose natural light of the architecturally iconic Pennzoil atrium by utilizing reflective, dichroic materials which introduce the vibrant colors of Houston street art into the lobby. The hanging clouds take advantage of the volume of the space while also seeking to bring the scale of the lobby down to the pedestrian level.

Digital Design – Grasshopper with Rhinoceros 3D

The installation was initiated as a way for the group to practice using computational software on a real project. The scope had to be small enough for experimentation but Design Labs Houston was insistent on using parametric software in the design and construction. Grasshopper with Rhinoceros 3D were chosen for the digital design.

We began searching for the right project and came across the artist series hosted by Transwestern in the building Gensler Houston occupies, Pennzoil Place. On being accepted as their next artist, we became inspired by the architecture and wanted to celebrate its primary asset, all of the natural light that washes the atrium.

The initial focus was to create a canopy of some sort over visitors that would give them the impression of being under a prismatic or holographic sky. We wanted to bring color into the lobby in a way that would interact with people and change throughout the day as the sun came in and out. As we further developed the design and became more comfortable with grasshopper, the group decided to move to a more organic shape that would really challenge us in construction and assembly. The new shapes were also a better representation of abstracted cloud formations hanging in the sky.

With the idea in mind, we could move on to grasshopper and begin modeling. By the time we were at the cloud design we had already modeled the first two options above in grasshopper so we were able to recycle the scripting for the fin creation and reuse it in our cloud script.

Grasshopper was an essential tool in the delivery of the project. Throughout the design, we were able to estimate the total cost of the install. Once we purchased the dichroic film material we were able to adjust the scale and density of the clouds to accommodate how much material we had to work with. The program not only helped in the design phase but also during construction.

Construction

We created a template in grasshopper for each cloud that included the frame cut, the string pattern, and the length and location for each fin. Each grid string was hand strung and every fin was hand cut… all 952 of them. We then placed all the fins along the string in their proper place and hung the clouds in the atrium. Although the next day was rainy,  the sun made an appearance and we were able to see the installation in full effect.

Also see Holographic Sky

Becoming A Digital Designer in the AEC Industry

The advent of the computer has changed how we design and build. It has created an infinite amount of potential for complexity and purpose in building design. Over the past few years, I have come to realize that architects and designers have no choice but to increase their digital understanding and skill sets if they want to stay relevant in tomorrow’s design age.

The software and tools that we are being introduced to will upgrade the expectations of our output exponentially in the coming years. We will be expected to deliver projects smarter, faster, and more uniquely than we ever have before and the only way to do this will be with a digital design influence. With this in mind, I’ve started the Becoming a Digital Designer series to catalog my growth as a digital designer in hopes that it might help fellow architects and designers navigate the complex and diverse world of digital design.

The core benefits that digital design brings to the AEC (architecture, engineering, construction) industry include

  • increased efficiency in design and construction
  • informed and responsive design
  • creative freedom to express complex form, pattern, and texture

Although there are many firms and professional independents that are boldly experimenting and developing with these emerging ideas, the full potential of this has not yet been realized in the larger industry. In the coming years, we will see a phasing out of traditional methods and an influx of digital methods from the next generation of designers who have a much deeper understanding of digital processes.

What do I mean by digital design?

In the AEC industry, there are many different ways to organize this idea. Below is a good start to understanding some of the different aspects that digital methods bring to the process.

  • Visualization: how we tell our story and sell our designs
    • 2D Media, Rendering, Virtual/Augmented/Mixed realities, Video/Animation, Web/Application Development, Augmented sketching
  • BIM (building information systems)/ 3Dmodeling:: how we document and analyze our buildings
  • Software/add-ins: How we understand our buildings
    • Tools that have been developed to optimize, inform and enhance the existing software to provide unique and specific solutions for project needs.
  • Data capture and analysis: how we inform our designs
  • Computational design: how we add complexity and precision to our designs
  • Fabrication: how we build our designs
  • Electrical/ Hardware engineering (sensor/connected buildings) : how we connect our designs

Simply put, digital design is using the computer to aid and inform the design and construction process. This translates to a variety of methods during the building process from project capture to design development to construction. Below, the diagram illustrates where certain processes may come into play throughout the project.

project timeline

Most of these digital services utilize new and different skill sets that step beyond traditional architectural knowledge. This will require most professionals to seek training and/or continuing education to attain these new skillsets in order to provide adequate processes and designs. In order to take full advantage of these services, we need to embed experts with these skillsets onto our project teams and get them to knowingly train people on the job. Without this, all the knowledge lives with a few key people and the projects suffer.

I’m not saying everyone has to learn everything; just that the more we learn the better everything gets.

The path to becoming a comprehensive digital designer is quite overwhelming for a beginner due to the many seemingly unrelated subjects; however, if taken one step at a time, the knowledge will develop to a level where the designer feels comfortable using diverse digital design methods at all stages of building design and construction. The hardest part is starting.